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only of U{;, but also of ion-electron and electron-
electron interactions, to be denoted by U/, and
U.., respectively. For a metal, the jellium
model (a lattice of positive point ions embedded
in a uniform sea of electrons) will be used here,
This is the model used for the electrostatic en-
ergy in the pseudopotential theory of metals, 2
Denoting the uniform electron density by n,

=Z (%/9Q,, it follows that
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where N, is the number of unit cells, Changing
variables of integration leads to Uj,= - 2U.,,
and then using the I'-function definition, it fol-
lows that!®
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Thus, the electrostatic energy density Ul for
both metalhc and ionic structures may be written
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remembering that (3)=0 for ionic structures. The
parameter o is a convergence parameter and is
usually chosen so that the real-lattice and recip-

rocal-lattice sums converge at about the same rate,

However, results are independent of the choice for
0.

There are two choices for the parameter X which
are of particular interest here, For x=(Q))!/3,
all the strained-volume dependence of Ul is con-
tained in the (1/Q4)!/? factor outside of the square
bracket in Eq. (11), and the square bracket con-
tains only volume-conserving shear dependence.
This choice is convenient for taking Fuchs-type
strain derivatives of U.,. The second choice, and
the one to be used throughout this paper, is
A= (90)1/3. This choice is convenient for differen-
tiating Ul with respect to the Lagrangian strain pa-
rameters,

7= 2Ty oy — 644) (12)

where repeated indices are to be summed and 6;;
is the Kronecker 6. The transformation coeffi-
cients are given by
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where X and X" are the position vectors of a mate-
rial particle in the initial and deformed states, re-
spectively, Derivatives of Ul, with respect to

71;; give directly the electrostatic contributions to
the Brugger-type elastic constants, which will be
discussed in Sec, III.

By performing the appropriate lattice and
reciprocal-lattice sums in Eq. (11), the electro-
static energy for any given metallic or ionic struc-
ture can be obtained. For metallic structures,
the electrostatic energy per ion is usually written
in the form

ZZ 2 ZZ 2
E . (per ion)=Q,Ug = a, (__e) =ap (_e) , (14)
a 27,

where «a is the lattice constant and #; is the radius
of the ionic sphere, given by 4 m73=Q,. Similarly
for ionic structures, the electrostatic energy per

molecule is written
722

- an(zjf) . (15)

where R is the nearest-neighbor distance. The «
coefficients entering in Eqs. (14) and (15) are
known as geometric coefficients when referring to
metals, and as Madelung constants when referring
to ionic structures. We have evaluated these co-
efficients for six metallic and five ionic structures
and have listed the results in Table I. For those
structures involving a ¢/a ratio, the evaluations
were performed for the case of ideal close packing
of spheres, i.e., ¢/a=1 for the simple hexagonal
structure, and ¢/a=V¥ for the hep and WC-type
structures. For the wurtzite structure, c/a= V¥
and u = ¥, which gives equal bond lengths and bond
angles.

E,s (per molecule)= 28,

IIl. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC
CONSTANTS

Having determined the electrostatic energy den-
sity of a deformed lattice, one can now calculate
the electrostatic contributions to the elastic con-
stants by the method of homogeneous deformation,
Since internal-strain effects may be treated sep-
arately (see Appendix A), here we will only con-
sider the case of zero internal strain, i.e., w=0.
Internal-strain contributions to the elastic con-
stants will be treated in Sec, IV. The Lagrangian
strain derivatives of U;s can be easily performed
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(see Appendix B), thus yielding the electrostatic
Brugger elastic constants
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Introducing the dimensionless parameters ¥ =R(1%)/
Q4’3 and g = Q4/*G(r)/2m, the expressions for the
first-, second-, and third-order elastic constants

are
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where
Xi5=544, (20)
Xign1=03500+ 04 051+04105 (1)
Yimi=8:i850m+8r810:;+ 818051

+81810+ 838011+ 8 &10m, (22)
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It is easily seen that the coefficients Xj;...,
Yijugeees @04 Z 51y, and thus the elastic constants
C3..., satisfy Cauchy relations, i.e., the order-
ing of the subscripts is immaterial. Therefore,
in general, all tl e elastic constants (through third
order) can be obtained from only two types of first-
order constants Cj§ and C%%; four types of second-
order constants C§jy, Ciis Cim, and Cifyx;
and seven types of third-order constants Cijy;,

(19)

CHrssr Chirixks Cirssans Crosxxxs Ciinixs
and C%,,,x, where the subscripts run from 1 to 3
with I#J#K. For these types, the elastic con-
stants with Cauchy relations have been listed in
Table II. In that table, as well as the remainder
of this paper, Voigt (reduced) notation is used for
the subscripts whenever referring to specific

TABLE 1.

Geometric coefficients for six metallic

structures and Madelung constants for five ionic struc-

tures.

For metals, the electrostatic energy per ion is

ay(2%%/a) = y(Z%*/27)), where a is the lattice constant
and 7, is the radius of the ionic sphere. For the ionic
structures, the electrostatic energy per molecule is
a4(2%?*/a) = ag(Z%*/R), where R is the nearest-neighbor

distance.

Metallic

Qg

@

simple cubic

fee

bee

diamond

simple hexagon~l
hcp

Tonic

—1.418648 7397
—2.2924310371
—1.8196167248
—2.6933990221
—1.4978559763
—1.6209293075

Qg

—1.760118 8842
—1.791747 2304
—1.791858 5114
—1.670 851 4055
—1.771 3894740
—1.791 676 2409

Qg

NaCl type

CsCl type
zinc blende

WC type
wurtzite

—3.4951291893
—2.035361 5095
—3.7829261041
—1.2355856381
—2.6802669939

—1.747 564 5946
—1.7626747731
—1.6380550534
—1.235 5856381
—1.641321 6274




